
Monte Carlo Fundamentals

Checks for Randomness

Overview

Do we need to check for randomness of normal variables if we use

Box-Muller or other distribution if we use the inverse CDF method

Interval test

Checking for randomness is just hypothesis testing where the null hypothesis
is:

: The numbers are randomH0

: They are not randomH1

So to implement such a hypothesis test we need to think of features we would
expect to see in truly random numbers

On average we would expect the proportion of random numbers 

 that are less than  to be X ∼ N(0, 1) c c

We need to develop this into a more formal statistical test though so we realise
than then number of random number less than  will be binomially distributedc

 where:X ∼ Bin(N , c)

 is the number of random numbers less than  drawn from 
trials
X c N

Given we are going to test with very large values of  we can assume a
normal distribution as so we assume

N

X ∼ N(Nc, Nc(1 − c))



Example 1

Why is this important

Example 2

Why might this test be particularly useful

Suppose we run 10000 simulations and we find that 5200 of the random
number are less than 0.5. Do we accept or reject the null hypothesis that our
numbers are random

We expect  and so our 95% confidence interval is X ∼ N(5000, 2500)
(5000 − 1.96 × , 5000 + 1.96 × ) = (4902, 5098)2500− −−−√ 2500− −−−√

How many numbers fall within a given set

We can easily extend the above test to any set on the interval U(0, 1)

Suppose we run 1,000,000 simulations from  and 803,000 of them

fall between 0.1 and 0.9

U(0, 1)

Falling between 0.1 and 0.9 has a binomial distribution

X ∼ Bin(1000000 × 0.8, 1000000 × 0.8 × 0.2) = N(800, 000, )4002

So again our 95% confidence interval is

.(800, 000 − 1.96 × 400, 800, 000 + 1.96 × 400) = (799216, 800784)

and we can reject H0



Further Examples

How would you test for the third decimal place being even

--- endif

We could also test how many random numbers are in the set 

[0, 0.1) ∪ [0.2, 0.3) ∪ [0.4, 0.5) ∪ [0.6, 0.7) ∪ [0.8, 0.9)

That is: do 50% of the random numbers have a first decimal place that is even

easily we could extned this to counting how many random number have a third
decimal place which is even



Visual Frequency Test

Method

Exercise

We should not under-estimate the power of the human eye to detect problems
with our random numbers

Many patterns that are difficult to detect by statistical methods will be instantly
visible to the human eye

The method is very simple:

Generate thousands or random numbers and group them into
buckets

Plot a histogram of the number in each bucket

In purely statistical terms this is a mere extension of the above and does not
really add anything, but any bias or pattern will be clearly visible

We cannot use this type of test to measure the extent of the randomness but
only to detect any obvious unrandom patterns

Design an LCG: choose  and m, a, c X0

Plot a histogram of the returns to see if any obvious non - random
features are visible



Frequency Distribution Test

Method

We can extend the above to look at the distribution of the frequency that
numbers fall with each interval.

This is useful because simply counting across the interval  would fool

the above test if it was done in sufficiently small intervals

U(0, 1)

We need an array to count the numbers of times we fall in each interval.

Supposing we subdivide the interval  into 100 intervals U(0, 1)
U( , )n−1

100
n

100

We then need to group our data into a frequency array

We finally need to compare this frequency array with the normal distribution we
would expect to get if true randomness were being observed

This is slightly confusing as there is effectively a double frequency count going
on. Lets look at an example

If we do 1000000 (1m) random numbers then we expect the number that are in

the interval (0.230,0.231) to be  or approximately Bin(1000000, 0.001)
N(1000, 999)

In fact this is the same distribution for all the intervals

So we have 1000 numbers all from N(1000, 999)

We then group these into a histogram and compare with the normal distribution



Exercise

Extensions

Design an LCG: choose  and m, a, c X0

Perform the above statistical test, which should result in a
spreadsheet with your histogram with the normal distribution overlaid
on top

You could test whether individual frequencies in your histogram fell
within an appropriate confidence interval

You could could that the number of frequencies that fell with a 95%
confidence interval was about 95%

You could do a chi-squared test on the actual versus expected from
the histogram



Independence

Example 1

For truly random numbers each number will be completely independent of the
previous one

Thinking back to the definition of independence

(x, y) = (x) × (y) ∀x, yfX,Y fX fY

We also need independence of all preceding random numbers not just the
previous one so our definition must extend to:

( , , . . , ) = ( ) × ( )×. . . × ( ) f , ,...,X1 X2 Xn
x1 x2 xn fX1 x1 fX2 x2 fXn

xn

∀ , , . . . ,x1 x2 xn

Really this is just another way of saying that whatever the values of 
 are the values of  should be unaffected, , . . . ,x1 x2 xn−1 xn

We can test for this by selecting subsets of our random numbers  such that
the previous numbers  have any given property and do all
the same randomness tests on this subset of 

xn
, , . . . ,x1 x2 xn−1

xn

Suppose there is a strong serial correlation between successive values in our
random number generator.

values of  would be more likely when the previous value was > 0.5xn
> 0.5xn−1

selecting only those values of  for which  and then testing that

the proportion of these values is  would cause a fail in  of

independence

xn > 0.5xn−1
Bin(n, 0.5) H0



Example 2

Solution

do 
  n=n+1
  new_num(n) = my_LCG()
 loop until ((new_num(n-1)>new_num(n-2)) and (new_num(n-2)>new_num(n-3)))

Take care

If  what is 

You are concerned that the random number generator tends to pick a number
less than the previous one if the previous two numbers were higher that the
one which preceded them

In the middle of your test algorithm:

new_num(n) is now in your subset of random numbers on which to

perform tests

>xn−1 xn−2 P( > )xn Xn−1



Variance Reduction Techniques

Motivating example

The big problem with Monte Carlo is that it is always an approximation

The solution is to do lots of runs

The problem with lots of runs is that they take time

However we can increase the rate of convergence using certain techniques
which we call variance reduction techniques

Suppose I wish to calculate the expected value of U(0, 1)

I could take 1000 random numbers from  and take the average of

them

U(0, 1)

The standard deviation of my error would be = 0.0091291
×12√ 1000√

The problem I have here is that I am taking numbers randomly from all over the
line.

Suppose I wanted to do something more akin to numerical integration where
we would go step by step across the interval adding up each number



The compromise solution is

Take a random number from  and then synthesise a number from

each of  etc by adding  then  etc to the original number

U(0, 0.1)
U(0.1, 0.2) 0.1 0.2

If we repeat this 100 times so that we have a total of 1000 random numbers
(100 random + 900 generated) then

The variance of the first number is × =1
12 0.12 1

1200

The variance of the average of the first 10 numbers is then the same: 

× =1
12 0.12 1

1200

The variance of the 1000 numbers is then × × =1
100

1
12 0.12 1

120000

and the standard error is = 0.0028871
120000

− −−−−√
So the standard error is reduced by a factor of 10−−√

This spreadsheet performs the experimental confirmation of this

file:///C:/Documents%20and%20Settings/David/My%20Documents/Google%20Drive/dah-cass/MTF/variance%20reduction.xls


Monte Carlo Fundamentals

Introduction

Monte Carlo calculations allow us to use random numbers to find approximate
solutions to mathematical problems that may otherwise be too complicated to
solve

There are many different ways in which this can help

Analysis of future uncertain events

Analysis of probability of uncertain outcomes

Solution of complex probability problems

Solution of integral type equations

The fundamental issue around all Monte Carlo analysis is the the results are
approximate



Law of Large Numbers

Example:

Solution:

The Law of Large Numbers states that if a large number of random vents
occur then the average outcome will converge on the expected outcome

It is also known as the law of averages

Sometimes it is used when to few trials have been used - this is known as
Gambler's fallacy

If 1000 random numbers are drawn from the distribution 

 what is the probability that the average lies between 47

and 49

N(48, )202

The sum of 1000 trials is  N(48000, 1000 × )202

So 

P(47 < Average < 49) = P(47000 < Sum < 49000)

= 

= 

= 

= 



Example 2

Solution

If random numbers are drawn from the distribution  how

many have to be drawn before the average is between 0.4999 and
0.5001 with a probability of 95%

U(0, 1)

Clearly  but what is E(U(0.1)) = 0.5 V ar(U(0, 1))

We use V ar(X) = E( ) − (E(X)X2 )2

V ar(X) = dx − (0.5∫ 1

0
x2 )2

Then we need to assume that the central limit theorem will apply and
so the sum of n trials will be:

Sum ∼ N ( , )n
2

n
12

The average of n trials will be

By symmetry we need to solve:



Extension 1:

Extension 2:

How many trials would we need to for the average to be between 0.49
and 0.51 with a probability of 95%

If we do 10,000 trials what accuracy would we expect?

Solve 

A = = 0.0056581.96
12000√

therefore the 95% confidence interval is (0.4943, 0.5057)



Using VBA and Excel to Generate Random
Numbers

Excel

VBA

Exercise:

In Excel we use the function rand() to generate a random number from 

U(0, 1)

In VBA we use the function rnd() to generate a random number from 

U(0, 1)

Test the above calculation by finding the average of 3,201 random

numbers generated from  and test how many times it falls

between 0.49 and 0.51.

U(0, 1)

Spreadsheet is here

file:///C:/Documents%20and%20Settings/David/My%20Documents/Google%20Drive/dah-cass/MTF/uniform%20mean.xls


Inverse CDF method

0 1 2 3 4 5 6 7

We use the inverse CF method to generate random variables from different
probability distributions given we can start from the uniform distribution

The steps are:

Integrate the probability density function (p.d.f.) to get the cumulative
density function (c.d.f.)

Invert the c.d.f. so you can find the 'value' from the cumulative
probability.

Generate random variables from U(0,1) and pass these into the
inverted c.d.f.

The diagrams below illustrate this:



Exercise

Write a function which generates numbers randomly from a Weibull
distribution

Remember the pdf is , for x >= 0 and 0

elsewhere

f(x) = k
λ

( )x
λ

k−1
e−(x/λ)k

Hint: Use the substitution  to calculate u = e−(x/λ)k

F(x)

This spreadsheet shows the method and compares the results with
the theoretical pdf of the Weibull distribution

file:///C:/Documents%20and%20Settings/David/My%20Documents/Google%20Drive/dah-cass/MTF/weibull.xls


Box-Muller

Can we apply the inverse c.d.f. method to the normal distribution?

Algorithm

Exercise

Fortunately there is an algorithm which we can use to produce randomly
distributed normal variables

This is called the Box-Muller algorithm and it produces pairs of independent

random variables from the standard normal distribution: N(0, 1)

Let  and  be r.v.s from the uniform distribution  then ifU1 U2 U(0, 1)

 and= cos(2π )Z1 −2lnU1
− −−−−−√ U2

= sin(2π )Z2 −2lnU1
− −−−−−√ U2

then  and  are independent random variables both with a distribution of Z1 Z2
N(0, 1)

Write a VBA routine to produce normal random variables using the
Box-Muller algorithm

A spreadsheet can be found here

file:///C:/Documents%20and%20Settings/David/My%20Documents/Google%20Drive/dah-cass/MTF/box%20muller.xls


Is there a short cut we can use in excel?

Is this as good as the Box Muller approach

How could we generate random numbers from the distribution 

How would we generate lognormal r.v.s such as 

N(μ, )σ2

Y ∼ lnN(μ, )σ2



Proof

The proof is motivated by thinking about random variables on a circular plane

we define R = −2ln( )U1
− −−−−−−−√

so P(R ≤ r) = P(−2ln( ) ≤ )U1 r2

= P(ln( ) ≥ − )U1
r2

2

= 1 − P ( < exp (− ))U1
r2

2

As  is uniform on  so we can sayU1 U(0, 1)

P(R ≤ r) = 1 − dt = 1 − exp (− )∫ exp(− /2)r2

0

r2

2

So we can differentiate the cdf to get the pdf and we see

 for (r) = exp (− ) × rfR
r2

2 r > 0

We define a new random variable  to be Φ Φ = 2πU2

and we can see that:  for (ϕ) =fΦ
1

2π
0 < ϕ ≤ 2π

Given  and  are independent then so must  and  beU1 U2 R Φ

so we can multiply pdf to get joint density functions so

(r, ϕ) = (r) (ϕ) = exp (− ) . rfR,Φ fR fΦ
1

2π
r2

2

so the probability that an event lies in a little bit of the  plane is:R − Φ

P = exp (− ) . r. dr. dϕ1
2π

r2

2

But we are interested in random variables over the  plane not the 
 plane

X − Y
R − Φ

So we need to equate probabilities for a little bit of the area of the 
plane and the 

R − Φ
X − Y

( )



i.e. exp (− ) . r. dr. dϕ = (x, y)dxdy1
2π

r2

2 fX,Y

geometrically we can see that  describes an area length  and width 

 that is an area of , whereas  simply describes an

area of 

drdϕ dr
r × dϕ r × drdϕ dxdy

dx × dy

So to transform from the  plane to the  plane we simply divide
the pdf by  and we have:

R − Φ X − Y
r

(x, y) = × exp (− ) . rfX,Y
1
r

1
2π

r2

2

∴ (x, y) = exp (− )fX,Y
1

2π
r2

2

∴ (x, y) = exp (− )fX,Y
1

2π

+x2 y2

2

∴ (x, y) = exp (− ) . exp (− )fX,Y
1

2π

−−√ x2

2
1

2π

−−√ y2

2

and so we have both  and  are normally distributed and independent.X Y



Inside the Random Number Generator

Linear Congruential Generator

Excel random numbers

Computers cannot generate true random numbers as they only perform
deterministic calculations.

If you really need true random numbers (and we generally do not) then this
company takes atmospheric data to produce true random numbers

For our purposes we use pseudo random numbers which computers can
generate.

The standard algorithm is called a linear congruential generator

These are defined by a recurrence relationship such as:

= (a + c) mod mXn+1 Xn

The choice of  and  is critical to the effective working of the method.a, m c

Let's build a spreadsheet and see how this works

What factors do you think would make a good choice of  and a, m c

Try experimenting with different values until you have produced a
good LCG

The random number generator in excel is a pseudo random number
generator but it is a very advanced one and we can use it as if it
produces true random numbers

https://www.random.org/randomness/


Simple Probability Calculation

Calculation of 

Integration of Well Behaved Functions

Why can two such different methods do the same thing

Is this a sensible method to use for these integrations?

If you roll 4 dice what is the probability that the sum is 7

Try to do this calculation with a traditional probability method

Now try to use a Monte Carlo method

π

The area of a circle is A = πr2

Can you use this to develop a Monte Carlo algorithm to calculate π

When you price options we can use Monte Carlo methods but we can also use
the Black-Scholes formula.

Because essentially Monte Carlo is about adding up lots of different
values

So it is like an integration of sorts

The Black Scholes formula is proved by integrating over the possible
share prices

Can you use a Monte Carlo method to find:

a) sin(x)dx∫ π/2

0

b) dx∫ 1

0
e− /2x2



Integration of Poorly Behaved Functions

What about function which cannot be solved analytically and would be unstable
if quadrature techniques were applied

For example how about the calculation:

sin ( ) dx∫ 1

0

1
x

Here you will find a Monte Carlo technique will give you a robust but
approximate way of calculation the integral



Simple Option Pricing

Introduction

 and  Review

So far you will be familiar with the binomial model and the Black Scholes model
for option pricing

Fundamentally as a result of the Cameron Martin Girsanov Theorem and the
Central Limit Theorem both these methods are effectively the same thing

As the number of steps tends to  the binomial model tends to the Black
Scholes model

∞

The Monte Carlo methods are also fundamentally the same thing - but with the
Monte Carlo methods we can start from a binomial perspective or from a Black
Scholes perspective and gain insight into how all the methods are effectively
equivalent

Additionally with the Monte Carlo method it is much easier to extend the
method to deal with more advanced modelling of equity prices with features
such as skew and stochastic volatility

P Q
Remember when you first looked at the binomial model

You started with an uptick and a downtick

Then do some algebra and the formula that emerges is 

, that is effectively an expected value over some

'other' probability measure ' '

= × ( )fn e−rΔt EQ fn+1
Q



Review of CRR model

We start with a very simple model of the price evolution of our underlying stock

The stock has price  at time 0 and the model advances in units of time S0 Δt

The term of the option is T

We assume the volatility of the stock is , which leads to a natural choice of 
and  of:

σ u
d

 and u = eσ Δt√ d = 1
u

and  - from arbitrage free constructionq = −derΔt

u−d

The value at each node is then worked out from the subsequent nodes with the

formula: = × ( )fn e−rΔt EQ fn+1

These formulas are derived by considering a hedging portfolio of stocks and
cash

The important thing about  and  is the gap between them as the Girsanov
Theorem can sort out the drift but not the volatility

u d

The  is to make the unit time volatility Δt
−−−√ σ

So simply by changing the probabilities of the uptick and the downtick we can
express the market price of an option (or any other financial asset) as an
expected value

This extends through the Cameron Martin Girsanov Theorem to the full Black
Scholes Model.

An illustration of this can be seen in this graphical simulation

file:///C:/Documents%20and%20Settings/David/My%20Documents/Google%20Drive/dah-cass/MTF/interestProj.exe


Binomial Monte Carlo

Weighted Probabilities

Can you explain how this is simpler to code than the normal binomial

model

What other advantages does it have?

Much of the mathematics of the binomial method has to be reproduced to use
the Monte Carlo method

although Monte Carlo methods are often simpler than other methods we
CANNOT

Use arbitrary values of  and u d

Use arbitrary  measuresQ
All we can do in the Monte Carlo method is simplify the algorithm by being able
to pick the up tick and the down tick randomly rather than having to write the
code to go through every single permutation

For given values of , , ,  and  can you write a Monte
Carlo version of the binomial model

S0 K T ΔT σ



Distribution Shift

Fundamentally the CMG is about  but the visible impact of this is to appear

to shift the distribution from the expected return on equity to the risk free rate
as we have seen in the above demonstration

dQ
dP

Can you change your model to reflect this directly in the VBA

Hint: Preserve the ratio of  and solve u : d q = 0.5

Solution:

 and u = C × eσ Δt√ d = C × e−σ Δt√

q = = 0.5−derΔt

u−d

q = = 0.5−C×erΔt e−σ Δt√

C× −C×eσ Δt√ e−σ Δt√

C = erΔt

+0.5× −0.5×e−σ Δt√ eσ Δt√ e−σ Δt√

C = 2×erΔt

+eσ Δt√ e−σ Δt√



Multiple Step Lognormal

Why

How many steps is it now sensible to have to get to an accurate result

(You may assume sufficient Monte Carlo runs).

One Step Monte Carlo

Can you reconcile the mathematics of what we have done to the proof

of the Black Scholes formula

It is a necessary limitation of the binomial model to only have discrete state
spaces.

This clearly means an uptick and a downtick in the case of the binomial model
but a basic extension is the trinomial model which has three ticks from each
state

However for a Monte Carlo approach we are not limited to discrete state
spaces.

Therefore it is possible (and sensible) to extend the model by allowing the
return at each point to be generated fully from a lognormal distribution

Extend your model to allow for full lognormal steps

Monte Carlo Options

Test your model using just one step

file:///C:/Documents%20and%20Settings/David/My%20Documents/Google%20Drive/dah-cass/MTF/spreadsheets/Monte%20Carlo%20options.xls


Ito's Lemma is Still Necessary

Proof

If you have followed the steps above you will probably expect to have
replicated Black Scholes results with a one-step lognormal model.

However (unless you have thought ahead to this section) it is highly likely you
will have made a mistake and you answers will be too high

The mistake we have made is to assume that the solution of the integral

equation:  is = rdt + σd
dSt

St
Wt =St S0ert+σWt

When in fact it is =St S0e(r−0.5 )t+σσ2 Wt

= rdt + σd ⟹ d = r dt + σ d
dSt

St
Wt St St St Wt

Now look at Ito's Lemma:

df(t, ) = [ + μ(t, ) + (t, ) ] dt + σ(t, ) dXt
df

dt
Xt

df

dx
1
2 σ2 Xt

fd2

dx2 Xt
df

dx
Wt

Where d = μ(t, )dt + σ(t, )dXt Xt Xt Wt

We set this up as follows:

Rewrite with  instead of St Xt

Then our  is  and our  is μ rSt σ σSt

The we use the function  (there is no way of knowing this

other than it works)

f(t, ) = ln( )St St

so df(t, ) = [ + μ(t, ) + (t, ) ] dt + σ(t, ) dSt
df

dt
St

df

ds
1
2 σ2 St

fd2

ds2 St
df

ds
Wt

then df(t, ) = [ + r + ] dt + σ dSt
df

dt
St

df

ds
1
2 σ2S2

t
fd2

ds2 St
df

ds
Wt

Now we need to calculate our derivatives:

f(t, ) = ln( ) ⟹ = 0, = , =St St
df

dt

df

ds
1
St

fd2

ds2
−1
S2

t

So putting it all together:

[ ]



dln( ) = [0 + r + ] dt + σ dSt St
1
St

1
2 σ2S2

t
−1
S2

t

St
1
St

Wt

Simplify

dln( ) = [r + ] dt + σdSt
1
2 σ2 Wt

Integrate:

∫ dln( ) = ∫ (r + )dt + ∫ σdSt
1
2

σ2 Wt

ln( ) = (r + )t + σ + lnSt
1
2 σ2 Wt S0

∴ =St S0e(r− )t+σσ2
2 Wt



Code for Different Methods

Option Explicit

Function max(x As Double, y As Double) As Double

  If x > y Then

    max = x

   Else

    max = y

   End If

End Function

Function CRR(S0, K, r, T, sigma As Double, n As Integer) As Double

  Dim S() As Double

  ReDim S(0 To n, 0 To 2 ̂ n - 1)

  Dim f() As Double

  ReDim f(0 To n, 0 To 2 ̂ n - 1)

  Dim delta_t, u, d As Double

  Dim j As Double

  Dim q As Double

  Dim node_x, node_y As Integer

  delta_t = T / n

  u = Exp(sigma * delta_t ̂ 0.5)

  d = Exp(-sigma * delta_t ̂ 0.5)

  q = (Exp(r * delta_t) - d) / (u - d)

  S(0, 0) = S0

  For node_x = 1 To n

    For node_y = 0 To 2 ̂ node_x - 1

      If node_y Mod 2 = 0 Then

        S(node_x, node_y) = S(node_x - 1, node_y / 2) * u

       Else

        S(node_x, node_y) = S(node_x - 1, (node_y - 1) / 2) * d

       End If

     Next node_y

   Next node_x

   

  For node_y = 0 To 2 ̂ n - 1

    f(n, node_y) = max(S(n, node_y) - K, 0)

   Next node_y

   

 For node_x = n - 1 To 0 Step -1

   For node_y = 0 To 2 ̂ node_x - 1

     f(node_x, node_y) = Exp(-r * delta_t) * (q * f(node_x + 1, node_y * 2) + (1 - q) * f(node_x + 1, node_y * 2 + 1))

    Next node_y

  Next node_x

CRR = f(0, 0)

End Function

Function Monte_Carlo_Binomial(S0, K, r, T, sigma As Double, n, runs As Integer) As Double

  Dim delta_t, u, d As Double

  Dim j As Long

  Dim q As Double

  Dim S As Double

  Dim sum As Double

  Dim payoff As Double

  Dim run As Long

  delta_t = T / n

  u = Exp(sigma * delta_t ̂ 0.5)

  d = Exp(-sigma * delta_t ̂ 0.5)

  q = (Exp(r * delta_t) - d) / (u - d)

  sum = 0

  For run = 1 To runs

    S = S0

    For j = 1 To n

      If (Rnd() < q) Then

        S = S * u

       Else

        S = S * d

       End If

     Next j

    payoff = max(S - K, 0)

    sum = sum + payoff

We can now see below the code for the three different methods

The Binomial Model

The Binomial Monte Carlo Model

The LogNormal Model



   Next run

  Monte_Carlo_Binomial = Exp(-r * T) * sum / runs

End Function

Function Monte_Carlo_LogNormal(S0, K, r, T, sigma As Double, n, runs As Integer) As Double

  Dim delta_t, u, d As Double

  Dim j As Long

  Dim q As Double

  Dim S As Double

  Dim jump As Double

  Dim sum As Double

  Dim payoff As Double

  Dim run As Long

  delta_t = T / n

  sum = 0

  For run = 1 To runs

    S = S0

    For j = 1 To n

      jump = Exp(Application.NormSInv(Rnd()) * sigma * Sqr(delta_t) + (r-0.5*sigmâ2) * delta_t)

      S = S * jump

     Next j

    payoff = max(S - K, 0)

    sum = sum + payoff

   Next run

  Monte_Carlo_LogNormal = Exp(-r * T) * sum / runs

End Function



Monte Carlo Adaptations

Introduction

So far we have considered the basic lognormal model for stock prices.

This is perfectly valid as a starting point but in reality stock prices movements
are not adequately modelled by the lognormal model

Notably they:

Exhibit sustained periods of higher volatility (Conditional
Heteroscedasticity)

Sometimes experience discrete price jumps or falls

Are more kurtose than would be predicted from a lognormal
distribution

When options are 'at the money' these are not great considerations but when
an option is severely out of the money then it is very important because:

We look at a number of ways of modelling these additional features within the
Monte Carlo framework

The main ones are

Price Jumps

Stochastic volatility

We always have a problem with models in that the data we have to fit them has
considerable randomness and so there is an ever present danger of over
fitting two many parameters

This spreadsheet shows how daily returns on the FTSE100 compares with the
lognormal distribution

file:///C:/Documents%20and%20Settings/David/My%20Documents/Google%20Drive/dah-cass/MTF/FTSE100.xls


Jumps

Price Jumps at Known Times

What fundamental fact about the modelling of share prices with a

lognormal Monte Carlo process can we use to simply to introduction

of price jumps into our analysis?

How should the size of the jump be modelled

Jumps in share prices are more formally known as Levy processes

Given that share prices are responding to information then any time when a
significant piece of information which might effect a share price becomes
known then there is a possibility that a share price may jump and so a simple
lognormal model of share price movements may not be appropriate

This is particularly important for out of the money options close to maturity

The are two different types of jumps we need to consider:

Those with known times but uncertain size

Those with uncertain times

Consequently the incorporation of known jumps into a MC valuation is very
simple:

Divide the process into intervals defined by when each jump is

Add or subtract the price jump at each point in time to the share price

Proceed as usual with option valuation

It is important to note here that for consistency with arbitrage free pricing each
jump should have an expected value of 0 under Q



Price Jumps at Unknown Times

If we believe jumps are going to arise as a Poisson process how do

we model the times of the jumps?

How do we model exponential waiting times?

This is very similar in principle to having price jumps at known times with the
exception that we now have to model when the jumps occur as well

Adapt your option valuation code from the previous chapter to allow

for share price jumps with size N(μ, σ2) which arise at a Poisson rate
of λ



Merton's Jump Diffusion Process

Clearly there are other ways of including jumps into a share price model.

The important thing to retain though is the no arbitrage condition

In Merton's Jump diffusion Process The governing SDE is

dSt

St
= (r − λk̄)dt + σdWt + kdq t

The jump event is governed by a compound Poisson process q t with Poisson

rate λ

and k is the magnitude of the random jump given by: ln(1 + k) ∼ N(γ, δ2)

so k̄ = E(k) = eγ+δ
2 / 2 − 1

The key thing to note here though is that the expected return of the process

under Q will still be erΔt because the expected size of the jumps is backed out
of the drift component of the diffusion

https://www.csie.ntu.edu.tw/~lyuu/finance1/2015/20150513.pdf


Stochastic Volatility

Sometimes we may notice that share prices not only move in occasional
discrete jumps but can become more volatile after a given event.

This reflects the reality of traders trying to settle to a new view of the market as
they take on new information

There are many different views we could take about how to model this
depending to a large part on how we interpret the real World events that drive
it.

Here are a few examples

We could make the volatility parameter increase for a given period
after an individual jump event

We could make the volatility parameter higher or lower depending on
whether the share price was higher or lower

We could make the volatility parameter increase (or decrease)
depending on the actual realised sample volatility over a previous
time period

We could observe that there are discrete periods of higher or lower
volatility which appear to act like two discrete states with the system
moving between the two states



Increased volatility post jump

What additional parameters would now be needed?

Could you adapt your code so that the period of increased volatility

was random

Could you adapt your code so that the increased volatility faded away

This is easy to model but very difficult to parameterise as there are now
multiple modelling variables that would need to be extracted from random
historic share price data

Increase in volatility and how this related to the size and direction of
the jump

How long the increase in volatility lasts for (and whether this is a
function of the size of the jump)

Whether the increase in volatility stops at some point, or whether it
simply fades away

Adapt your model so that a jump in price is followed by one month of a
volatility increase of proportionately the same size as the price jump.



Volatility and share price correlation

The Heston SV Model

Maths

Formulation

This is the Monte Carlo version of the Heston Stochastic Volatility Model

Formally the set us is as follows

It is an observed fact of markets that there are periods when volatility is higher
than others

The traditional Black-Scholes model does not pick this up as there is a
constant volatility assumption σ

What market evidence have you seen of this?

The Heston Stochastic Volatility Model (HSV) seeks to address this
problem by treating volatility itself as its own stochastic process

The original 1993 paper by Heston can be found here

Suppose under a real world probability measure Q, the price process S t of the

underlying security is governed by the following diffusion process

dS t = μS tdt + σtS tdW1t

and the volatility process σt follows the diffusion process:

dσt = − ασtdt + βdW2t

where μ is the expected rate of return, W1t and W2t are two standard Brownian

motions so that:

Cov(dW1t, dW2t) = ρdt

where ρ is the constant correlation coefficient between W1t and W2t

We also assume the continuously compounded rate of interest is a constant r

To make the algebra easier we let: Vt = σ
2
t

file:///C:/Documents%20and%20Settings/David/My%20Documents/Google%20Drive/dah-cass/MTF/Heston93.pdf


Analysis P-World

Applying Ito's Lemma to Vt = σ
2
2 = f(σt) where f(x) = x2 gives:

dVt = κ(θ − Vt)dt + γ VtdW2t√

where:

θ =
β2

2α
 is the long term mean of the variance

κ = 2α is the mean-reverting speed of the variance

γ = 2β is the volatility of the variance

Proof

df(t, Xt) =
∂f

∂t
+ μ(t, Xt)

∂f

∂x
+

1

2
σ2(t, Xt)

∂2f

∂x2
dt + σ(t, Xt)

∂f

∂x
dWt[ ]

where

dXt = μdt + σdWt

But now we have

dσt = − ασtdt + βdW2t

so we re-write Ito's Lemma for σ rather than X

df(t, σt) =
∂f

∂t
+ − ασt

∂f

∂σ
+

1

2
β2

∂2f

∂σ2
dt + β

∂f

∂σ
dWt[ ]

We want to get to dVt and Vt = σ
2
t  so we use f(x) = x2

So 
∂f

∂t
= 0, 

∂f

∂x
= 2x and 

∂2f

∂x2
= 2

So Ito's Lemma becomes

dVt = dσ
2
t = df(σt) = 0 − ασt. 2σt +

1

2
β2. 2 dt + β.2σ. dWt[ ]



dVt = β2 − 2ασ2t dt + 2βσ. dWt[ ]

dVt = 2α
β2

2α
− σ2t dt + 2βσ. dWt[ ]

dVt = 2α
β2

2α
− Vt dt + 2β Vt. dWt[ ] √

Defining xt = lnS t, we see that by Ito's Lemma

dxt = μ −
1

2
Vt dt + VtdW1t( ) √

The Cholesky Decomposition gives us that:

W2t = ρW1t +√1 − ρ2W0t

where W0t and W1t are two independent Brownian motions under P. This gives

us the correlation of ρ between W1t and W2t

Check

cov(W1t, W2t) = cov(W1t, ρW1t +√1 − ρ2W0t),

cov(W1t, W2t) = cov(W1t, ρW1t) + cov(W1t,√1 − ρ2W0t),

cov(W1t, W2t) = ρ × var(W1t) +√1 − ρ2 × cov(W1t, W0t),

cov(W1t, W2t) = ρ,

We can now rewrite the HSV as follows:

dxt = μ −
1

2
Vt dt + VtdW1t( ) √



Analysis Q-World

dVt = κ(θ − Vt)dt + ργ VtdW1t +√1 − ρ2γ VtdW0t√ √

So far this is all well and good. Now we need to map our stochastic volatility
process into Q world

Let us start with a Cameron Martin Girsanov review

If Wt is a S.B.M. under P and γt is a previsible process then:

∼

Wt = Wt + ∫
t

0
γsds is a S.B.M under Q where Q is defined by:

dQ

dP
= exp −∫

T

0
γtdWt −

1

2∫
T

0
γ2t dt( )

This is far more powerful than the special case we actually need. In practice
what we do is to chose the γt to take out the market price of risk and so Q

becomes the risk-neutral probability measure

We start with the following inspired definition:

ηt =
γρ ( μ−r ) +λ ( t , St , Vt )

γ√1−ρ2 Vt

,
μ−r

Vt

′

∈ R2( √ √ )
where λ(t, S t, Vt) is the market price of volatility risk

we now write Wt = (W0t, W1t)
′ ∈ R2 for convenience and define Λt by

Λt = exp ∫
t

0
η
′

u
dWu −

1

2∫
t

0
| | ηu | |

2du( )
Then Λt is a martingale, given the way it is defined and this is largely

irrespective of ηt providing the Novikov condition is satisfied:

E exp
1

2∫
T

0
| | ηt | |

2dt < ∞[ ( )]



So given E(Λ0) = 1 then E(ΛT) = 1

The next thing we do is to define a new probability measure Q such that

dQ

dP
= ΛT

So by Girsanov's Theorem, the process W ∗
t  defined by:

W ∗
t = Wt − ∫

t

0
ηudu

is a standard Brownian motion under Q

It may be helpful to write out W ∗
t  longhand at this point to have a more detailed

look at this vector

W ∗
0t = W0t + ∫

t

0

λ(u, Su, Vu)

γ√1 − ρ2 Vu

du + ∫
t

0

ρ(μ − r)

√1 − ρ2 Vu

du

√ √

W ∗
1t = W1t + ∫

t

0

μ − r

Vu
du

√

So W ∗
0t and W ∗

1t are two independent standard Brownian motions under Q

This brings us to the question of what is λ. Clearly λ is a parameter which
allows us to adjust for the market's attitude to the uncertainty around the
volatility of the volatility

Unlike the first order market price of risk there is no arbitrage free
construction of what λ must be and so we have to observe this value from the
market

Work by Breeden (1979) suggests that λ(t, S t, Vt) is proportional to Vt and

hence equal to λVt where λ is a constant so we will proceed on that basis from

here

Ultimately this is a matter of fitting a parameter to the data, This analysis by
PIMCO suggests the parameter fitting will be fairly stable

file:///C:/Documents%20and%20Settings/David/My%20Documents/Google%20Drive/dah-cass/MTF/Breeden.pdf
http://europe.pimco.com/EN/Insights/Pages/The-Volatility-Risk-Premium.aspx


Then under Q, the risk neutral dynamics of the logarithmic price process and
the variance process are:

dxt = r −
1

2
Vt dt + VtdW

∗
1t( ) √

Check

dxt = (μ −
1

2
Vt)dt + VtdW1t√

W1t = W
∗
1t − ∫

t

0

μ − r

Vu
du

√

dW1t = dW
∗
1t −

μ−r

Vt√

dxt = (μ −
1

2
Vt)dt + Vt dW

∗
1t −

μ−r

Vt√ ( √ )
dxt = (r −

1

2
Vt)dt + VtdW

∗
1t√

dVt = κ
∗ (θ ∗ − Vt)dt + ργ VtdW

∗
1t +√1 − ρ2γ VtdW

∗
0t√ √

where

κ ∗ = κ + λ and

θ ∗ =
κθ

κ +λ

so κ ∗  and θ ∗  are risk neutral model parameters

The check for this line would work the same way as the dxt check but is simply

a little more complicated

We now define the process W ∗
2t by putting:



W ∗
2t = ρW

∗
1y +√1 − ρ2W

∗
0t

It can be shown that W ∗
2t is a Brownian motion under Q (fairly trivial as W ∗

0t and 

W ∗
1t are) and that: Cov(dW ∗

1t, dW
∗
2t) = ρdt under Q

So we can re-write the price and variance dynamics as:

dS t = rS tdt + VtS tdW
∗
1t√

dVt = κ
∗ (θ ∗ − Vt)dt + γ VtdW

∗
2t√

Because we have got our xt and Vt equations under Q-World into the same

form as we had them under P-World then these equations must follow as they
were established as equivalent under P-world.

In summary, so far we have managed to define our simultaneous stochastic
differential equations under P and then we have recalculated them under Q.
You will notice the μ in P world has become a r in Q world in particular

we now have two options for valuing an option:

Monte Carlo

finding a closed form solution

We start with the Monte Carlo option



The Monte Carlo Implementation

Stochastic volatility lends itself very well to Monte Carlo methods as the
complexity makes it very difficult (although not impossible) to do via an
analytical solution

Set up a function to take the parameters for the HSV model

Write code to generate thousands of values of W1t

Using the Cholesky Decomposition write code to generate thousands of
values of W2t

The formulas above are under the real-world probability measure P

what do you need to do next to allow you to create arbitrage free prices for
your options

Extend your function to create a single price path using a small time increment 
dt

Extend your function to create many prices paths under Q

Extend your function to calculate the risk neutral value of a European call
option

Extend your function to calculate the value of a European call or put option

The graphical Computer program to illustrate these concepts InterestProj is
here

Could you extend your code to value American options

file:///C:/Documents%20and%20Settings/David/My%20Documents/Google%20Drive/dah-cass/MTF/interestproj.exe


Multiple state volatility model

What observed feature do you think this is

The multiple state volatility model is a simple way of producing an observed
feature of share prices.

This is because we can use a multiple state model to simulate periods of high
volatility and periods of low volatility, therefore our overall share price
movements will have more small movements and more very large movements
than would be predicted by a simple lognormal model

Extend your model to allow for a two volatility state solution

Assume that the changes between the states are separated by
exponentially distributed lengths of time

Can you now adjust the additional parameters you have σ1, σ2λ1 and 

λ2 (the waiting time rates) to recreate the distribution of returns we

can observe from the actual FTSE100 data



Complex Options

American Options

Why do you think this is the case

CRR Binomial Tree for American Option Pricing

American Options cannot be simply priced by Monte Carlo methods

It may help to review the Binomial tree method for American option pricing

American Options allow the holder to exercise at any time up to and including
maturity.

When you do a CRR tree you need to adapt your code so that at each node
you calculate two different values:

The value of the option assuming you do not exercise: the discounted
expectation under Q

The value of the option assuming you do exercise: simply 

 for a call optionMax(0, − K)St

Check out the code in this spreadsheet: Binomial Model to see how American
Options are handled

Remember how we worked out the payoff at the end and then for each node
decide if we would have exercised at that point given the follow-on value

Clearly there is little point in being able to price American call options (on non-
dividend paying shares) as they have the same price as the European Call
option. We will largely just consider Put options from now on

file:///C:/Documents%20and%20Settings/David/My%20Documents/Google%20Drive/dah-cass/MTF/Binomial%20Model%20Solution%20(2018%20version).xls


Available Methods

The Critical Decision Method

Method

There are some methods available for approximating American option prices
using Monte Carlo methods.

A comprehensive paper by Caflish and Chaudary of UCLA is presented here
for further reading.

I have given a simple but slow method and a surprisingly fast but more difficult
method below

The critical decision method is based on the idea that (for simple call and put
options) we can divide the decision space into (for put options):

All share prices above  would involve not exercisingYt

All share prices below  would involve exercisingYt

and visa versa for call options

where we need to work out what the threshold values  are, for each  for
which we are allowed to make a decision

Yt t

Working backwards from the term  of the option, start with the last
time  at which we could make a decision to exercise

T
tn−1

Calculate the value of the option assuming we do not exercise before
 and then do exercise at  if the share price is below tn−1 tn−1 Ytn−1

Repeat this exercise with multiple values of  until we find the

value such that the value of the put option is a maximum

Ytn−1

This is then the threshold we will actually use

Repeat whole process at time  and so on until we have a set of

thresholds  for 

Ytn−2

Yti
i = 1..n − 1

The value of the American Put option is the value of the option with
deterministic 'exercise decision' at each point  based on the value
of 

ti
Yti

A Spreadsheet can be found here. It includes a very simple evolutionary
search method

http://www.math.ucla.edu/~caflisch/Pubs/Pubs2005/KellerMeet2005.pdf
file:///C:/Documents%20and%20Settings/David/My%20Documents/Google%20Drive/dah-cass/MTF/spreadsheets/Monte%20Carlo%20Options.xls


Advantages

Disadvantages

Improvements

Ultimately can be used to produce arbitrarily accurate results

Extremely slow

Only uses discrete decision points, which although there can be arbitrarily
many of them will make an already slow method even slower

Using the same set of random numbers for each threshold  will make

comparison converge quicker

Yti

Efficient selection of  will allow optimum to be found more quicklyYti



Longstaff Schwartz Method

Method is as follows

This method which can also be called the least squares method, can only
ultimately produce an approximation but is much faster and has been tested to
produce remarkably accurate results

The essence is to fit a quadratic (or some other appropriate function) to the
follow-on values as you go backwards through the set of all the Monte Carlo
runs

Generate  price paths of the stockN

At time  it is axiomatic that you exercise the put option if the
share price is less than the strike price

T = tn

So we have a full payoff profile at time tn

At time  we have a decision to make:tn−1

We know the intrinsic value is  but we do not

know the follow-on value

max(K − , 0)Stn−1

However we do know the follow-on value in the particular run of the
model we are looking at

We also know the follow-on value for all the other runs and also what
the share price was at time:  for each of these runstn−1

So if we fit a function: follow-on value = f(current share price) to
the data for each run of current share price and follow-on value then
we can use this function to estimate our follow-on value for each run
at time tn−1

We now have (for each run) an intrinsic value and a follow-on value
at time  and so we can decide which is the greatest of the two
and this becomes our payoff at time 

tn−1
tn−1

We then go back to  and repeat the whole exercisetn−2

A common function for  is  where  is

the vector of share prices at time  and  is the payoffs discounted back to 
 from 

f f(a + b × X + c × ) = YX2 X
ti Y

ti ti+1



Exotic Options

This is where we get to be a little more creative with our programming. We will
go back to our basic Monte Carlo routine so as to keep the coding as simple
as possible.

The things you will need to consider when programming exotic options are:

Do we need extra variables to carry data such as running
maximums?

Do we need extra variables to carry information such as whether an
option has kicked in or not?

How do you pass to the function the type of option you want
evaluated?

How are we going to use conditional programming to ensure we
make the right payoff calculations for each different type of option?

There is ultimately no limit to the amount of different options you could
consider, but we will look at a few key ones here. The point is once you can
program then you can change your code to reflect any particular option you
want.



Single Barrier Options

  knocked_out = false

  if S < 90 then 
    knockout_out = true
   end if

What would be wrong with

  if S < 90 then 
    knockout_out = true
   else
    knocked_out = false
   end if

What else will you need to change

A single barrier option is typically an option which pays out zero unless it has
reached a certain level. Once it has reached that level then it acts as a normal
option.

You can have options which are up-and-in, up-and-out, down-and-in and down-
and-out.

For example if we turned our standard option into a down and out option with a
knock-out point of £90 then it would behave just like any other call option
unless the price of the underlying share went below £90, at any point, at which
point the option would become worthless.

So you need an extra variable say knocked_out as boolean .

Initially you set this to false:

Then you will need to work out where to add the lines:



Digital Options

  if S > K then
    payoff = 1    'or whatever payoff is
   else
    payoff = 0
   end if

function indicator(condition as boolean) as double
  if condition then
    indicator = 1
   else
    indicator = 0
   end if
 end function

Whereas for a standard call option the payoff would be ,

for a digital option the payoff could be , that is the payoff is £1 if

the share price is above the strike price and nothing otherwise.

Max( − K, 0)Sn

I( > K)Sn

The code for this would need to be something like:

You could also write an actual indicator function, but this would probably be
overkill

Notice here how we have used the boolean  variable - this can only take

values true or false

We can also set the return value of the function in the middle of the function if
we wish as is shown above

You CANNOT use the return value as an interim variable though as the
function will think this is a further function call



Lookback Options

  if S > max_S then max_S = S

What else do you need to do

Lookback option can come in many forms, but the classic variety is for

example an option where instead of the payout being  it

might be , so you have to "look back" over

the price evolution of the share to calculate the payoff of the option.

Max( − K, 0)Sn

Max (Ma ( ) − K, 0)x0≤i≤n Si

To include lookback options you will need an extra variable which 'carries' the
look back amount

For example the line:

will use the variable max_S to store the running maximum value of the share
price

Adapt your monte carlo model code so that it can handle Barrier
options, digital options and lookback options



Wider Applications

Monte Carlo Merton

How does this equate to the Black Scholes model

Black Scholes Merton Model

Interest Rates Models

The Merton Model is a simple extension of the Black Scholes model in which
instead of modelling the value of an option with a payoff which is the amount by
which the share price exceeds the strike price, we model the value of an equity
and a bond where the bondholder receives all of the enterprise value up to the
redemption payment amount and the equity holder receives the rest

Treat the redemption payment on the bond as the strike price

The value of the equity is then calculated as if it were the call option

The value of the bond is the enterprise value of the firm MINUS the
Black Scholes value of the equity

So we have the following equivalence

Share price Enterprise value

Strike price Par value of Bond

Value of call option Value of share

Value of share - call option Value of bond

There are many different models for interest rates which use simple stochastic
techniques to to model different paths for interest rates in the future.

We can use these to project forward thousands of scenarios and from this
calculate the the price of a bond would be if each path were the known future
path of interest rates.

We then take the average of these prices and compare this with the actual
bond price to calculate the 'shift' of  (the real world to risk neutral measure
shift)

dBt

From this we can then re-engineer a full yield curve given our model and the
knowledge of the current price of the zero coupon bond

This program: interestproj.exe shows this concept graphically

file:///C:/Documents%20and%20Settings/David/My%20Documents/Google%20Drive/dah-cass/MTF/interestproj.exe


Mortgage Back Securities

What is a MBS

Ruin Theory

Mortgage back securities achieved notoriety in the credit crunch.

They are not as complicated as often thought and can easily be modelled
using Monte Carlo techniques

A mortgage is a set of payments that a house buyer makes to pay off the loan
he took out to buy the house

If the bank receiving those payments collects them and then agrees to sell on
those payments IF they are made, then different investors can buy different
tranches of payments. The tranche of payments you can buy is called a
mortgage back security.

If the bank receives 100 mortgage payments each month and you buy the first
ten received then you have a very secure investment as it is unlikely that over
90 people will default. If you buy the last 10 then you have a very risk asset as
there is a high chance that several (if not all ten) of your payments will not be
received.

The e-lecture below explains the working in detail

The spreadsheet used in this e-lecture can be found here

Ruin theory is the mathematics of predicting how likely an insurance company
is to become insolvent given a certain set of starting conditions and a certain
claims experience

It is difficult to analyse in a closed form mathematical way and tends to be
considered by Monte Carlo simulations

We would typically consider the following factors when performing a simple ruin
theory calculation:

Initial capital

Rate of premium income

Claim frequency

Claim distribution

file:///C:/Documents%20and%20Settings/David/My%20Documents/Google%20Drive/dah-cass/extra/e-lectures/securitization/MBS.xls


Multiple Decrement Models - Pensions

0 1 2 3 4

The probability of ruin can then be calculated over any given time horizon by
running thousands of random simulations as in the spreadsheet below:

Ruin Theory Spreadsheet

In a simple pension valuation you assume people work until they retire at say
age 65 and then they receive a pension until they die

It is relatively easy to calculate the value of this as a financial liability

However in practice things will often be more complicated due to other states
each pension scheme member might be in

For example a multiple state model can include sickness as well as death and
retirement

The 'state space' may then appear as follows:

The normal state is healthy. However the life can also be Dead or Sick or
Retired

A simple mortality model would have a transition rate to death

But a more sophisticated model would have transitions to sick and back
(recovery)

file:///C:/Documents%20and%20Settings/David/My%20Documents/Google%20Drive/dah-cass/UEA/CT6/ruin%20theory.xls


and also transitions from sick to dead at a different rate from healthy to dead

We will ignore retirement for the time being and just analyse the multiple state
model

The simple two state model: healthy and dead is simple to analyse analytically
for a constant  as it is simple exponential decayμ

However there is no closed form solution to the multiple state model and so we
can use a Monte Carlo solution

Problem:

The sponsoring company wishes to know the cost of providing a sickness
benefit to employees of £50 per day while they are sick. Develop a Monte
Carlo model to price the value of this benefit given parameters of the transition
rates  and  as defined in the diagramμ, σ, ρ λ

Hint: each transition time will be distributed exponentially

Solution is Healthy Sick Dead Model.xls

file:///C:/Documents%20and%20Settings/David/My%20Documents/Google%20Drive/dah-cass/MTF/spreadsheets/Healthy%20sick%20Dead%20Model.xls


Parameterisation

Method of Moments

Fitting the Lognormal Distribution to Price Data

How do we solve these problems

Recall that the method of moments involves calculating sample statistics such
as the mean and variance of an actual distribution and then fitting this to a
known analytic distribution

Example

You have a set of data with a mean of 23 and a standard deviation of
12. You believe the data comes from a lognormal distribution: 

. calculate  and  using the method of momentslnN(μ, )σ2 μ σ

Price data is not a simple set of values from a distribution.

There are a number of issues we need to be careful about:

We would naturally assume it to be geometric

The distribution should describe the price changes not the price

We will typically have values on M,T,W,T and F but not at the
weekends

First we need to take logs of our data

Then we take differences

We now have data we would expect to fit a normal distribution

We still have to solve the weekend problem

We could

Make the assumption that the weekend is a three day period and
hence multiply both the mean and variance of our distribution by 3

Make the assumption that as market's are closed we can treat Friday
to Monday as one day



SDE interpretation of the 'log difference' method

Cholesky Decomposition

2 Random Variables

Both assumptions are assumptions and it makes more sense to actually test
the validity of either using the data that we have

Essentially we are dealing with a composite process which combines a one
day process with a three day process

By viewing the spreadsheet: Fitting volatility to weekly data.xls we observe a
very interesting phenomenon

We believe our data comes from the SDE: = μdt + σd
dSt

St
Wt

The solution of this is: =St S0e(μ− )t+σσ2
2 Wt

Or in other words: =SΔt Ste
(μ− )Δt+σσ2

2 WΔt

∴ ln( ) − ln( ) = (μ − )Δt + σSt+Δt St
σ2

2 WΔt

And so var(ln( − ln( )) = ΔtSt+Δt St σ2

The Cholesky decomposition allows us to take a set of known correlations
between random variables and then construct a matrix which will allow us to
recreate these correlations from a set of independent random variables.

In the case of two random variables we know that  and  are random

variables drawn from  and have a correlation of .

X Y
N(0, 1) ρ

If we are now given a new random variable  such that 

 then how do we derive  such that 

∼ N(0, 1)X ′

corr(X, ) = 0X ′ Y corr(X, Y ) = ρ

In other words what is the matrix  such that [ ]a

c

b

d

[ ] [ ] = [ ]a

c

b

d

X

X ′

X

Y

We have  and X = aX + bX ′ Y = cX + d ∴ a = 1, b = 0X ′

cov(X, Y ) = a. c. var(X) + d. b. var( ) + (a. d + b. c)cov(X, )′ ′

file:///C:/Documents%20and%20Settings/David/My%20Documents/Google%20Drive/dah-cass/MTF/Fitting%20volatility%20to%20weekly%20data.xls


What is 

Generalising the triangular matrix

So cov(X, Y ) = a. c. var(X) + d. b. var( ) + (a. d + b. c)cov(X, )X ′ X ′

∴ cov(X, Y ) = a. c + d. b = c

∴ c = ρ

Given  we have that var(Y ) = 1 var(cX + d ) = 1X ′

∴ V ar(X) + var( ) = 1c2 d2 X ′

∴ + = 1ρ2 d2

∴ d = 1 − ρ2− −−−−√

So our Cholesky decomposition is:

[ ] = [ ] [ ]X

Y

1

ρ

0

1 − ρ2− −−−−√
X

X ′

L × LT

If we now multiply our matrix by its transpose we observe the following:

[ ] × [ ] = [ ]1

ρ

0

1 − ρ2− −−−−√
1

0

ρ

1 − ρ2− −−−−√
1
ρ

ρ

1

We notice that we have reconstructed the correlation matrix of the original
relationship between the random variables  and X Y

We can extend this logic to more than 2 random variables

For example for three random variables the Cholesky decomposition is:

= ×
⎡
⎣⎢

1

ρ1,2

ρ1,3

ρ1,2

1

ρ2,3

ρ1,3

ρ2,3

1

⎤
⎦⎥

⎡
⎣⎢

t1,1

t1,2

t1,3

0

t2,2

t2,3

0

0

t3,3

⎤
⎦⎥

⎡
⎣⎢

t1,1

0

0

t1,2

t2,2

0

t1,3

t2,3

t3,3

⎤
⎦⎥

Solving gives us:

⎡ ⎤



Example

Curve Fitting and Least Squares Regression

Simple grid search

=
⎡
⎣⎢

t1,1

t1,2

t1,3

0

t2,2

t2,3

0

0

t3,3

⎤
⎦⎥

⎡

⎣
⎢⎢⎢⎢⎢

1

ρ1,2

ρ1,3

0

1 − ρ2
1,2

− −−−−−√
−ρ2,3 ρ1,2ρ1,3

1−ρ2
1,2√

0

0

1 − −ρ2
1,3

( −ρ2,3 ρ1,2ρ1,3)2

1−ρ2
1,2

− −−−−−−−−−−−−−−−−√

⎤

⎦
⎥⎥⎥⎥⎥

This may look complicated but if this system of 9 equations in 9 unknowns
reduces naturally one equation at a time and and is very easy to solve.

A numerical algorithm is easy to implement

A correlation matrix between ,  and  is given by A B C
⎡
⎣⎢

1
0.6
0.4

0.6
1

0.5

0.4
0.5
1

⎤
⎦⎥

Show how you would generate the random varaibles ,  and  from
uniform independent random variables  ,  and 

A B C
U1 U2 U3

If you wish to fit a function of several parameters to a set of data - this can be
a very computationally intensive task

If there is only one parameter then using goal seek in Excel will probably be
perfectly serviceable, but you cannot use this method if you have multiple
parameters

First you need to decide what is meant by best fit. For most purposes
minimising the square of the deviation between the actual data and the fitted
data will be a sensible metric, hence the expression "Least squares
Regression"

Then we need to decide how to search the vector space of all possible
parameter combinations for the one for which the sum of the squares of the
deviations is the least

We list below a number of methods in order of increasing sophistication.

We assume:



Orthogonal Grid Search

Steepest Decent Method

Line minimisation

there are  parametersn

the sum least squares function is denoted by f

the current set of parameters is stored in a vector denoted by P

Calculate  at every point in a  dimensional grid and then select
the point in the grid for which  is least. This is the set of parameters

 which gives the best fit

f n
f

P

As per the simple grid search but:

Minimise for parameter 1, keeping the other parameters constant,
then do the same for parameter 2 and so on, starting again with
parameter 1 and repeating until the function cannot be reduced by
changing any further parameters

Calculate the gradient vector at  and then minimise in the steepest
direction. Once the minimum has been found in this direction
recalculate the gradient and repeat the process until you reach a
minimum in all directions

P0

Methods 2 and 3 both require us to be able to minimise along an individual line
within our hyperspace

Which ever method we use (apart from the grid) we will need to minimise our
function along any particular line in the vector space of the parameters

Line minimisation is analogous to Newton-Rhapson root finding although we

are not solving  but rather we are solving  i.e. the point

which the function (least squares deviation) is at a minimum

f(x) = 0 (x) = 0f ′

For Newton Rhapson the assumption we made was of local linearity - sop this
time the assumption we make is that the function is locally quadratic

We can use the first and second derivatives if we have them (a vector and
matrix respectively) but if not a simple numerical procedure will suffice

calculate , where 

is the unit vector in parameter space of the direction in which we are

= f(P), + f(P + hx), = f(P + 2hx)f0 f1 f2 x

h



Convergence Speed

Conjugate Gradient Method

minimising and  is a small incrementh

Then  is the rate at which the (negative) gradient is

getting shallower and so given  is the current gradient in the

direction  then our initial line minimisation guess is 

=f ′′
0

( − )−( − )f2 f1 f1 f0

h2

=f ′
0

( − )f1 f0

h

x = − x ×Pn+1 Pn
f ′

0

f ′′
0

We then repeat this process along the same line until we have found our one
dimensional minimum - at which point we continue with whatever multi-
dimensional method we were using

On first inspection the second and third methods would appear to be quite
good methods, but in practice they both tend to zig zag very slowly towards a
solution and a much more efficient method is found by the method of conjugate
gradients

The conjugate gradient method is as follows:

Step 1: Initialise the set of directions  to the basis vectors ui ei

Step 2: Save your starting position as P0

Step 3: For , move  to the minimum along direction 
and call this point 

i = 1, . . . , N Pi−1 ui
Pi

Step 4: For , set  to be i = 1, . . . , N ui ui+1

Step 5: Set  to be uN −PN P0

Step 6: Move  to the minimum along the direction  and call this point PN uN
P0

Step 7: Repeat this basic algorithm  times and any quadratic form will be
minimised

N

The result in step 7 was proved by Powell in 1964

This spreadsheet Powell.xls contains an implementation of the method

file:///C:/Documents%20and%20Settings/David/My%20Documents/Google%20Drive/dah-cass/MTF/Powell.xls


Bootstrapping

Simple Stock Returns

Method

Issues

Can you think of a problem with this method

Can you think of solutions

The essence of bootstrapping is that we don't know what the distribution of
stock returns is, so we simply use historic stock returns as our sample space

This spreadsheet gives FTSE100 data

Use it to develop a Monte carlo method which prices an option on the
FTSE100

Pick a random day in the history of the data you have

Take the market return for that day

Apply this to your current simulated share price

Repeat for a long as you are simulating the share price
behaviour

Run thousands of times to perform your Monte Carlo
calculation

file:///C:/Documents%20and%20Settings/David/My%20Documents/Google%20Drive/dah-cass/MTF/FTSE100%20price%20data.xls


Making Bootstrapping more Realistic

Random Walk in Share Price History

Using a Longer Period

We are going to assess the log returns of the FTSE100 data over 1 year
periods.

We only have 34 data points but we can still measure the skew and kurtosis of
the returns from this amount of data.

We need the following formulas

Sample Excess Kurtosis = − 3
( −1

n ∑n
i=1 xi x̄)4

( ( − )1
n ∑n

i=1 xi x̄)2
2

Sample Skewness =
( −1

n ∑n
i=1 xi x̄)3

[ ( − ]1
n ∑n

i=1 xi x̄)2
3/2

Note: Ideally we would use the unbiased estimators at this point but given the
reasonably large sample and the intrinsic lack of accuracy in this process the
pure sample statistics will probably suffice

Exercise: Write VBA functions to calculate the mean standard
deviation, skewness and kurtosis of a data set

This time instead of taking random days from the past we start with one
random day from the past and then randomly choose an adjacent day

We continue this process taking the price moves on successive adjacent days
either going forward of backwards

By running this simulation thousand of times you can measure the skew and
kurtosis of the distribution so generated

This time we will use randomly chosen days in the past but then take the return
over a one month period.



Can you see a problem with this method

Ratioing up one days returns

What are we trying to achieve

This model will run quicker as as we onlty need 12 return values per one year
simulation

Can you also change your model so that you use whole year segments of the
share price return

This time we randomly choose days in the past and then ratio up the return
from that day by an appropriate amount to simulate the return for a whole year

We could also do this for 12 separate months or even take a monthly return

and ratio up by 12−−√

Each time we perform the bootstrapping in a different way we are trying to
recreate the features of the actual share price return distribution.

For each method there are a number of different parameters we can change
and it makes sense to try out different methods until we have a realistic
simulation of the actual share we are modelling (in our case the whole
FTSE100



Generating Functions

Generating Functions

Probability generating functions

Generating functions are a strange concept when you first come across them
but they have many applications and often make otherwise complicated
calculations much more straighforward

The probability generating function of a random variable  is X
G(t) = E ( )tX

For a discrete random variable (on the integers) this is: 

G(t) = p(x)∑
x=−∞

∞
tx

For a continuous random variable this is: , where 

 is the probability density function.

G(t) = f(x) dx∫
−∞

∞
tx

f(x)

What is the probability generating function which describes a dice roll?

Now calculate (G(t))2

Can you see the practical application that probability generating functions
might have?



Moment generating functions

The moment generating function of a random variable  is X
M(t) = E ( )etX

For a continuous random variable this is: , where 

 is the probability density function.

M(t) = f(x) dx∫
−∞

∞
etx

f(x)

Calculate the moment generating function for the the normal distribution:

Proof can be found here

Now differentiate  and find  and  again for (t)MX
d (0)MX

dt

(0)d2MX

dt2

N(μ, )σ2

proof (first moment)

proof (second moment)

file:///C:/Documents%20and%20Settings/David/My%20Documents/Google%20Drive/dah-cass/extra/MGF%20normal.html


Characteristic Functions

Cumulant generating functions

The characterisitc function is very closely related to the moment generating
function in that it is defined as

(t) = E ( )φX eitX

It is the Fourier transform of the probability density function and as such is
particularly important

The cumulant generating function of a random variable  is X
K(θ) = logE ( )eθX

We can see that for X ∼ N(μ, ), (θ) = θμ +σ2 KX
1
2 σ2θ2

So ,  and (θ) = μ + θK ′ σ2 (θ) =K ′′ σ2 (θ) = 0K ′′′

The cumulants are , ,  for = μk1 =k2 σ2 = 0kn n ⩾ 3

How do you think the cumulants are defined

This allows us to connect the cumulant generating functions with a Maclaurin
expansion and write:

K(θ) = + + + +. . .κ1θ1

1!
κ2θ2

2!
κ3θ3

3!
κ4θ4

4!

The dummy variable  has been replaced by  in the above to avoid confusion
with time

t θ



Fourier Analysis

Quadratures

Introduction

Very basic quadrature methods

A quadrature is just a name we use to describe methods of numerical
integration

In this chapter we will look at some simple methods such as the trapezium rule,
which you will already be familiar with and then we will consider some more
sophisticated developments, such as Simpson's and Boole's rule, which
interpolate function points with polynomials of increasing degree

Finally we will look at Gaussian quadratures where the assumption of evenly
spaced abscissa points is dropped and a more general form of quadrature is
developed which can produce remarkably accurate results with relatively little
calculation

The most basic form of numerical integration is called the left point rule: In this

case we simply divide the function into intervals of width  and then add up

the area of the rectangles width:  and height: , where  is the value

of  at the left of the interval

Δx
Δx f( )xi xi

x

This gives: f(x)dx ≈ Δx × (f( ) + f( )+. . . +f( ))∫ b

a x0 x1 xn−1

where ,  and the s are evenly spaced across the interval.a = x0 b = xn xi

The right point rule and the mid-point rule follow by analogy

Clearly these methods are very primitive and it is easy to improve on them



The Trapezium Rule

The trapezium rule represents the first level of sophistication in the numerical
calculation of integrals

consider the problem of how to calculate the area under the curve: 

 between  and y = × sinxe−x 0 π

The following graph shows how we could use a series of trapeziums to
estimate this integral

We can easily see that the area under the trapeziums reduces to:

A = × (f(0) + 2f( ) + 2f( ) + 2f( ) + f(π))π
8

π
4

π
2

3π
4

So more generally the trapezium rule is given by:

f(x)dx ≈ × (f( ) + 2f( ) + 2f( )+. . . +2f( ) + f( ))∫ b

a
Δx

2 x0 x1 x2 xn−1 xn

Write a VBA routine to approximate the integral of a general function
between abscissas  and  with any given number of intervals using
the trapezium rule

a b

Approximate the area under  between  and 
using 4, 12 and 120 intervals

y = × sinxe−x 0 π



Simpson's Rule

Suppose instead of fitting straight line segments to our function we attempt to
find a better fit by fitting quadratic segments

Look at the same function below (grey) with two black quadratics fitted to the
first three and last three calculated function points

By considering a function  on the interval  and using

abscissa points ,  and , calculate the quadratic which will
interpolate the three points

f [−θ, θ]
−θ 0 θ

Using basic calculus, calculate the area under this quadratic on the

interval  as a function of , ,  and [−θ, θ] θ f(−θ) f(0) f(θ)

This leads us to Simpson's Rule which is stated generally as:

f(x)dx ≈ × (f( ) + 4f( ) + 2f( ) + 4f( )+. . . +2f( ) + 4f( ) + f( ))∫ b

a
Δx
3 x0 x1 x2 x3 xn−2 xn−1 xn

Write a VBA routine to approximate the integral of a general function
between abscissas  and  with any given number of intervals using
Simpson's Rule

a b

Approximate the area under  between  and 
using 4, 12 and 120 intervals using Simpson's Rule (2,6 and 60
quadratic segments)

y = × sinxe−x 0 π



Simpson's three eighths Rule

The next level is to fit cubic segments

Look at the same function again (grey) with the red cubic fitted to four
calculated function points

The principles are exactly the same but the algebra is a bit more complicated,
so Simpson's 3/8ths Rule over a  interval can be expressed as:3Δx

f(x)dx ≈ × (f( ) + 3f( ) + 3f( ) + f( ))∫ b

a
3Δx

8 x0 x1 x2 x3

Write a single VBA routine to approximate the integral of a general
function between abscissas  and  with any given number of
intervals and allowing the user to choose between the methods given
so far

a b

Approximate the area under  between  and 
using 3, 6, 12 and 120 intervals using Simpson's 3/8ths Rule

y = × sinxe−x 0 π



Boole's Rule

Programming Extensions

The next level is to fit quartic segments

This time the interpolating function is a quartic

The principles are again the same, so Boole's Rule over  interval can be
expressed as:

4Δx

f(x)dx ≈ × (14f( ) + 64f( ) + 24f( ) + 64f( ) + 14f( ))∫ b

a
Δx
45 x0 x1 x2 x3 x4

Extend your VBA routine to include Boole's Rule

Approximate the area under  between  and 
using 4, 12 and 120 intervals using Boole's Rule

y = × sinxe−x 0 π

There are a number of things you should now do to tidy up your routine

Ensure the routine checks for an appropriate number of intervals for
each integration method

You could splice different methods where  does not fitn

You could include an option to leave out  and let the routine try
different values until some convergence criterion is reached

n



Gaussian Quadratures

General Considerations

2 Point Gaussian Quadratures

So far all of our methods have assumed that the abscissa points have been
equally spaced along the -axisx

We could have changed this if we wanted but there seemed little point and it
would have made the algebra more complicated

The question therefore arises: Can we improve the speed or accuracy of our
routine by using a different set of abscissa points?

In general all quadrature methods are based on the formula:

f(x)dx ≈ f( )∫ b

a

∑
i=1

n

ωi xi

Where  are a set of weights and  are a set of abscissa pointsωi xi

As we are now free to choose  values we should be able to approximate
our integral much more accurately - in fact if we motivate our selection of 
and  by fitting polynomials then this method will calculate the integral of an
order  polynomial exactly

2n
ωi

xi
2n − 1

W.l.o.g we work on the interval [−1, 1]

We wish to find , ,  and  such thatω1 ω2 x1 x2

, for a cubic , i.e.:f(x)dx ≡ f( )∫ 1

−1
∑
i=1

2

ωi xi f(x)

, i.e. this

relation must hold for all choices of 

+ x + + dx ≡ f( ) + f( )∫ 1

−1
a0 a1 a2x2 x3x3 ω1 x1 ω2 x2

ai

We proceed with basic calculus

≡ f( ) + f( )[ x + + + ]a0
a1x2

2
a2x3

3
x3x4

4

1

−1
ω1 x1 ω2 x2

(1 − (−1)) + + + ≡ f( ) + f( )a0 a1
−(−112 )2

2 a2
−(−113 )3

3 a3
−(−114 )4

4 ω1 x1 ω2 x2

2 + ≡ ( + + + ) + ( + + + )a0
2
3 a2 ω1 a0 a1x1 a2x2

1 a3x3
1 ω2 a0 a1x2 a2x2

2 a3x3
2

2 + ≡ ( + ) + ( + ) + ( + ) + ( + )a0
2
3 a2 a0 ω1 ω2 a1 ω1x1 ω2x2 a2 ω1x2

1 ω2x2
2 a3 ω1x3

1 ω2x3
2

As this is an identity we can match the co-efficients of the ai

: a0 2 = +ω1 ω2

: a1 0 = +ω1x1 ω2x2

= +2



n Point Gaussian Quadratures

: a2 = +2
3 ω1x2

1 ω2x2
2

: a3 0 = +ω1x3
1 ω2x3

2

The best way to solve these equations is guess and check as follows:

as symmetry seems likely assume  therefore =ω1 ω2 = = 1ω1 ω2

 gives a1 = −x1 x2

 gives a2 = + = 22
3 ω1x2

1 ω2x2
2 x2

1

so  - this is the Legendre Polynomial order 23 − 1 = 0x2
1

w.l.o.g.  and = −x1
1
3

−−√ =x2
1
3

−−√

Calculate , both analytically and using

2 point Gaussian quadrature

2 + 6x − 3 + dx∫ 1

−1
x2 x3

The last thing we need to do to make our method useful is to drop the

requirement to work on the  interval[−1, 1]

There are two additional things we need to consider to to this:

the  need to be transposed from the [-1,1] interval to the [5,10]
interval

ωi

The area calculated at the end needs to be ratioed up from a width of
2 (1 - (-1)) to a width of 5 (10-5)

Calculate , both analytically and

using 2 point Gaussian quadrature

2 + 6x − 3 + dx∫ 10

5
x2 x3

We could repeat the above exercise for 3 and then 4,5 ,6 etc points. The
algebra does get complicated, but fortunately we have the following theorem:

If we perform n point quadrature by selecting the  to be the roots of the
Legendre Polynomials and the weighting function to be 

, where  is the differential of the 

Legendre Polynomial then our resulting quadrature will integrate
polynomials of order  exactly

xi

=ωi
2

(1− )( ( )x2
i P ′

n xi )2 ( )P ′
n xi nth

2n − 1

We do not attempt to prove this result here - but the above analysis is the
proof of this result for 2 point quadrature. You can see how the Legendre
Polynomial arises in the above analysis

The Legendre Polynomials are defined by: 

(x) = ( × (x − 1 × (x + 1 )Pn
1

2n ∑
k=0

n ( )n

k

2

)n−k )k



Formula 98 files are Legendre Polynomials and Legendre Polynomials wi

Calculating  is a simple application of the product rule(x)P ′
n

So we can see that the first few of the Legendre Polynomials are:

n = 0 : (x) = 0P0

n = 1 : (x) = xP1

n = 2 : (x) = (3 − 1)P2
1
2 x2

n = 3 : (x) = (5 − 3x)P3
1
2 x3

n = 4 : (x) = (35 − 30 + 3)P4
1
8 x4 x2

Produce a spreadsheet which draws graphs of each of the Legendre
Polynomials

What do you notice about the dispersion of the roots?

Now compare the roots of the n-th order Legendre Polynomial with

the value of x = cos ( )(i−0.25)π

n+0.5

How might we use the formula: x = cos ( )(i−0.25)π

n+0.5

1. Develop a VBA function which can perform an n point Gaussian
quadrature over a given interval for any given function

2. change your code so that the calculation of the Legendre
Polynomial roots is only calculated once, however many times the
routine is called

Hint: you will need to store the  and  values outside of the
function so that they have module wide scope and use a boolean
array to determine whether the values have already been calculated
or not

ωi xi

3. Use 2, 4, 6, 8 and 10 point Gaussian quadrature to calculate 

sinxdx∫ π

0

The answer spreadsheet : quadrature.xls is here

file:///C:/Documents%20and%20Settings/David/My%20Documents/Google%20Drive/dah-cass/MTF/Formula%2098%20files/Legendre%20polynomials.txt
file:///C:/Documents%20and%20Settings/David/My%20Documents/Google%20Drive/dah-cass/MTF/Formula%2098%20files/Legendre%20polynomials%20wi.txt
file:///C:/Documents%20and%20Settings/David/My%20Documents/Google%20Drive/dah-cass/MTF/spreadsheets/quadrature.xls


Fourier Analysis

Fourier analysis allows us to convert waveforms into spectral densities and
back again

In excel draw a graph of y = sinx

On the same axes draw y = sinx + sin2x
2

Create a VBA function for  and again plot on the

same axes for different values of 

y = ∑
k=1

n
sinkx

k

n

You can soon see that as  this function becomes a sawtooth waven → ∞

This raises the question: If we started with the sawtooth wave wave could we
calculate the co-efficients

This is where fourier analysis comes in

For our purposes we will skip Fourier series and go onto the continuous
Fourier transform

The fourier tranform  of an integrable function  is given byf̂ f : R → C

(ξ) = f(x) dxf̂ ∫ ∞

−∞
e2πixξ

 is the original wave function of time  and  is the spectral density of

frequency 

f x f̂
ξ

The process can be inverted by the inverse transform:

f(x) = (ξ) dξ∫ ∞

−∞
f̂ e−2πixξ

The above formulas look rather daunting but we start by breaking them down
with Euler's formula:

= cosx + isinxeix

Write a VBA function which takes a function , a parameter ,

specifies bounds  and  outside of which the function will be close to

zero, and returns the Fourier transform 

f ξ
a b

(ξ)f̂



Discrete Fourier transform

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Before we look at the algorithm for the Fast Fourier transform we must
understand the discrete Fourier transform.

This is simply the discretised version of the Fourier transform - the numerical
integration version.

Instead of performing the integral:  we perform

the sum 

(ξ) = f(x) dxf̂ ∫ ∞

−∞
e2πixξ

(ξ) = f(x)f̂ ∑
x=i

n

e2πi ξx
n

The following diagrams illustrate how this works to produce the spectral density
of the function

You should note that there are alternative ways of setting this up:

We could go from x=1/n to 1 and leave the divide by n out

We could have the  in the Fourier transform and the positive in the
inverse transform

e−

The principles are the same in each case

The spreadsheet DFT.xls shows how a discrete Fourier transform can be
performed in excel

file:///C:/Documents%20and%20Settings/David/My%20Documents/Google%20Drive/dah-cass/MTF/spreadsheets/DFT.xls


Fast Fourier Transform
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Fast Fourier transform Exercise

HARD (I will try and demonstrate before end of term)

The Fast Fourier Transform takes advantage of the fact that the discrete

Fourier transform set up as above allows us to repeat the use of the 
and so avoid having to keep calculating a computationally expensive number

e2πixξ

We then divide each transform into an odd and an even section and show how
different transforms can be calculated from already calculated numbers.

The following slides illustrate the point

Generate 1024 numbers in excel with some sort of periodicity

Write a visual basic subroutine (behind a button) which takes
these values into an array

Calculate all the  values you will need, just using
separate  and  values

e2πi x
n

x y

Use the fastest algorithm you can to calculate the Fourier

transform  for all values of (ξ)f̂ ξ ∈ [1..1024]
Output back to excel the Fourier transform you have created
(the modulus of the complex numbers)

Test your routine with different signal numbers f(x)

The issue here lies in how to structure the arrays to carry the
required information in the FFT algorithm



Gram Charlier Method

Gram-Charlier Introduction

Setup of Maths

The purpose of the Gram-Charlier Model is to incorporate both the skewness
and kurtosis of the underlying share into the option valuation

Developed by Backus, Foresi and Wu (2004)

The reason for doing this is that is we look at historic share prices we can see
that the level of skew and kurtosis they exhibit is not consistent with that
predicted by the lognormal model

This spreadsheet shows this feature with FTSE100 data

Key idea is to use the third and fourth moments of the cumulant generating
function to include skew and kurtosis and then invert the cumulant generating
functions to produce a probability density function which better approximates
actual share returns and then integrate this up as in the Black Scholes model
to produce a closed form valuation method for options

The shortcoming of this model is that it does not allow for variable volatility

Let  be the price of the underlying security at time .St t

The one-period logarithmic return  is given by:Yt

= ln − lnYt St St−1

The return over T periods is

= ln − ln =Y T
t+1 St+T St ∑

k=1

T

Yt+k

Let  be the cumulant generating function of . ThenK(θ) Yt+1

K(θ) = ∑
i=1

∞

κi
θi

i!

th

file:///C:/Documents%20and%20Settings/David/My%20Documents/Google%20Drive/dah-cass/MTF/backus%20foresi%20wu.pdf
file:///C:/Documents%20and%20Settings/David/My%20Documents/Google%20Drive/dah-cass/MTF/FTSE100.xls


where  is the -order cumulant of κi ith Yt+1

Suppose that the one-period returns are independent and identically

distributed. Then the cumulants of the sum  are , for 

 In particular, the mean and variance of  are respectively 

, 

Y T
t+1 T × κi

i = 1, 2, . . . , Y T
t+1

= T μμT = Tσ2
T σ2

Aside

Note that: (θ) = logE( )KX eθX

∴ (θ) = logE ( )K +X1 X2 eθ( + )X1 X2

∴ (θ) = logE ( × )K +X1 X2 eθ( )X1 eθ( )X2

∴ (θ) = log (E ( ) × E ( ))K +X1 X2 eθ( )X1 eθ( )X2

∴ (θ) = logE ( ) + logE ( )K +X1 X2 eθ( )X1 eθ( )X1

∴ (θ) = (θ) + (θ)K +X1 X2 KX1 KX2

And the  is the log process and so we are adding these successive random
variables together

Yt

It turns out that  and  etc give us the higher moments albeit indirectly:κ3 κ4

Skew: = E [ ] =γ1 ( )X−μ

σ

3
κ3

κ1.5
2

Kurtosis: = E [ ] =γ2 ( )X−μ

σ

4
κ4

κ2
2

The aside above shows us that doubling the time period doubles all of the
cumulants so it is easy to see that:

, =γT
1

γ1

T√
=γT

2
γ2

T

Let , be the standardized T-period return of the underlying

security. (This just keeps things a little more simple)

=ZT
−Y T

t+1 μT

σT



Using the above results and the first four terms on the Gram-Charlier
expansion, Backus, Foresi and Wu (2004) gives the following probability
density function for :ZT

f( ) = ϕ( ) (1 − ( ) + ( ))ZT ZT

γT
1

3!
ϕ(3) ZT

γT
2

4!
ϕ(4) ZT

where  is the probability density function of the standard normal

distribution and  is the  order derivative of 

ϕ(x)
(x)ϕ(i) ith ϕ(x)

By direct differentiation,

(x) = (3x − )ϕ(x)ϕ(3) x3

(x) = ( − 6 + 3)ϕ(x)ϕ(4) x4 x2

Write a VBA function to calculate the above formula

Investigate the shape of the probability density function

Formula 98 file is here. (save as .fm2 before opening in Formula 98.

The time-t price of a European call option maturing at time T is:

C(t) = E [max( − K, 0)| ]e−rT St+T Ft

= ( − K)g(x)dxe−rT ∫ ∞

ln(K/ )St

Ste
x

where  is the risk free rate of interest,  is the strike price of the call and 

 is the probability density function of  under a risk neutral probability

measure

r K
g(x) Y T

t+1

We now simply substitute in for  the probability density function we have

developed above:

g(x)

C(t) = ( − K)ϕ( ) (1 − ( ) + ( )) de−rT ∫ ∞

Z ∗
Ste

+rT σT ZT ZT

γT
1

3!
ϕ(3) ZT

γT
2

4!
ϕ(4) ZT ZT

where  and = rTrT =Z ∗ ln(K/ )−St rT

σT

file:///C:/Documents%20and%20Settings/David/My%20Documents/Google%20Drive/dah-cass/MTF/formula%2098%20files/gram%20charlier.txt


'All' that remains is to crunch through the great big integration

backus, Foresti and Wu obtained the following approximation to the call price:

C(t) ≈ Θ( ) − K Θ( ) + ϕ( ) ( (2 − ) − (1 − + 3 − 3 ))St d1 e−rT d2 St d1 σT

γT
1

3!
σT d1

γT
2

4!
d2

1 d1σT σ2
T

where

=d1
ln( /K) + (r + /2)TSt σ2

σT

= −d2 d1 σT

As you can see this reduces to the Black-Scholes formula when 

= = 0γT
1 γT

2

Write a VBA function to calculate European Call prices using the
Gram-Charlier Model

Test you routine produces the correct answers when = = 0γT
1 γT

2

Investigate the impact of changing the skew and kurtosis of the share
price according to the model

Use put-call parity to develop a formula for the Gram-Charlier price of
a put option and write a VBA function for this

Solution is Gram Charlier calculation.xls

There are obvious limitations to the Gram-Charlier model

By considering the sum of two normal distributions with different
variances investigate the the skew, kurtosis and higher order
moments of this distribution

Calculate the higher order cumulants of this distribution

Discuss how you would improve the Gram-Charlier model

Spreadsheet is moments test.xls

file:///C:/Documents%20and%20Settings/David/My%20Documents/Google%20Drive/dah-cass/MTF/spreadsheets/Gram%20charlier%20calculation.xls
file:///C:/Documents%20and%20Settings/David/My%20Documents/Google%20Drive/dah-cass/MTF/spreadsheets/moments%20test.xls

